

Polymet - Leakage conditions for mound at year 2070			Units below are ft-day
$KK_1 := 0.31 \cdot \frac{ft}{day}$	Hydraulic Conductivity Upper Virginia Fm.	$K_1 := KK_1 \cdot ft^{-1} \cdot day$	$K_1 = 0.310$
$KK_2 := 0.9 \cdot \frac{ft}{day}$	Hydraulic Conductivity Biwabik Fm.	$K_2 := KK_2 \cdot ft^{-1} \cdot day$	$K_2 = 0.900$
$WW := 7.93 \cdot \frac{\text{in}}{\text{yr}}$	Downward leakage flux into bedrock	$W := WW \cdot ft^{-1} \cdot day$	$W = 1.81 \times 10^{-3}$
LL := 7690-ft	Length of flow system (East Pit to PMP)	L;= LL·ft ⁻¹	L = 7690.0
DD := 4490·ft	Distance to Virginia/Biwabik contact	$D := DD \cdot ft^{-1}$	D = 4490.0
ww := 4500·ft	Flow tube width	$w := ww \cdot ft^{-1}$	w = 4500.0
$GG_o := 1620 \cdot ft$	Ground elevation at x=0	$G_o := GG_o \cdot ft^{-1}$	$G_0 = 1620.0$
$HH_o := 1592 \cdot ft$	Head at x=0	$H_o := HH_o \cdot ft^{-1}$	$H_0 = 1592.0$
$BB_o := 1220 \cdot ft$	Base elevation at x=0	$B_o := BB_o \cdot ft^{-1}$	$B_0 = 1220.0$
$S_G := 0.0039$	Ground slope		$S_G = 0.00390$
$S_B := S_G$	Aquifer base slope		$S_B = 0.00390$
$QQ_0 := -50 \text{gpm}$	Inflow at x=0	$Q_o := QQ_o \cdot ft^{-3} \cdot day$	$Q_0 = -9.625 \times 10^3$
$G(x) := G_0 + S_{G'}x$	Ground elevation	G(0) = 1620.0	G(L) = 1650.0
$B(x) := B_o + S_B \cdot x$	Base elevation	B(0) = 1220.0	B(L) = 1250.0
$K(x) := \begin{bmatrix} K_1 & \text{if } x \leq D \\ K_2 & \text{otherwise} \end{bmatrix}$	Hydraulic conductivity distribution along flowpath		

"Point-and-shoot" solution method

Iterate on QQ $_{o}$ and/or WW until the head at x = LL is 1300 ft; that is, H(L) = 1300 H(L) = 1300.1

This solution is for 1-D horizontal flow and accounts for: Variable saturated thickness Uniform downward leakage Sloping aquifer base

